Journal of Organometallic Chemistry, 431 (1992) 271–281 Elsevier Sequoia S.A., Lausanne JOM 22595

Synthesis and characterization of alkylaluminum and -gallium derivatives of thiomorpholine. Molecular structures of Me₃Al \cdot N(H)C₄H₈S and [Et₂Al(μ -NC₄H₈S)]₂

Majid Taghiof, D. Greg Hendershot, Maryfrances Barber and John P. Oliver Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (USA) (Received June 28, 1991; in revised form January 2, 1992)

Abstract

Trialkylaluminum derivatives, R_3AI (R = Me, Et or ⁱBu), react with thiomorpholine, depending upon the conditions and stoichiometry, to give the adducts $R_3AI \cdot N(H)C_4H_8S$ (R = Me, 1a; Et, 1b; ¹Bu, 1c), $R_3AI \cdot N(H)C_4H_8S \cdot AIR_3$ (R = Me, 2a; ¹Bu, 2b), the amido derivative [Et₂Al(μ -NC₄H₈S)]₂, 3, or the bridged amido adduct $[R_2Al(\mu-NC_4H_8S)]_2 \cdot (AlR_3)_2 (R = Et, 4a; ^iBu, 4b)$ and for Me₃Ga the simple addition compound, Me₃Ga $N(H)C_4H_8S$, 5. The resulting compounds have been characterized by ¹H and ¹³C NMR spectroscopy. The structures of 1a and 3 were determined by single crystal X-ray diffraction techniques. 1a and 3 were found to be in the monoclinic cell system, space group $P2_1/c$ (No. 14) with cell constants for 1a: a = 8.452(4) Å; b = 21.075(4) Å; c = 12.267(2) Å; $\beta = 90.37(2)^{\circ}$ and Z = 8; for 3: a = 7.167(1) Å; b = 13.547(2) Å; c = 16.227(2) Å; $\beta = 96.74(1)^{\circ}$ and Z = 4 (dimers). The structure of **1a** was refined to a final R = 6.30% ($R_w = 5.99\%$) based on 2029 observed reflections $(I \ge 3.0\sigma(I))$. The molecule exists as an adduct with an average Al-N bond distance of 2.03 Å. The structure of 3 was refined to a final R = 5.93% ($R_w = 4.62\%$) based on 1722 observed reflections $(I \ge 3.0\sigma(I))$. The molecule exists as a dimer with a puckered four-member Al₂N₂ ring. The Al-N bond distances range from 1.96 to 1.99 Å. ¹H NMR studies showed that formation of the addition complex at nitrogen locks the thiomorpholine ring in the chair conformation which leads to coupling $(^{3}J = 8 - 12 \text{ Hz})$ between the NH proton and the axial protons on the α ring-carbon.

Introduction

The reaction of monodentate amines with trialkyl Group 13 metal derivatives, R_3M , has been studied extensively [1]. Typically the reaction leads to a simple addition compound as shown in eq. 1. If a primary or secondary amine or ammonia is used, a subsequent elimination step may occur leading to amides, imides or ultimately to the aluminum nitride.

$$\mathbf{R}_{3}\mathbf{A}\mathbf{I} + \mathbf{N}\mathbf{R}'_{n}\mathbf{H}_{3-n} \rightleftharpoons \mathbf{R}_{3}\mathbf{A}\mathbf{I} \cdot \mathbf{N}\mathbf{R}'_{n}\mathbf{H}_{3n} \to (\mathbf{R}_{2}\mathbf{A}\mathbf{I}\mathbf{N}\mathbf{R}'_{n}\mathbf{H}_{2-n}) + \mathbf{R}\mathbf{H}$$
(1)

Correspondence to: Professor J.P. Oliver, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.

This decomposition process has been studied by several groups and has been shown to proceed in a stepwise manner leading to small rings and cage structures [2]. In several recent papers, Interrante et al. have discussed the decomposition process and have considered the bonding in these systems in detail [3]. Substantially less information is known about the formation and structures of organoaluminum compounds with bifunctional or polyfunctional bases. When a second basic site is present, the additional site may interact with metal alkyls to yield more complex products. Several recent studies have appeared in which compounds containing two or more nitrogen atoms [4], nitrogen and oxygen atoms [5], or nitrogen and sulfur atoms [6] are present. A variety of different structural types have been observed for these products including simple addition compounds. derivatives with two or more types of Al atoms and complexed cage structures. We have now extended this work to include thiomorpholine where both nitrogen and sulfur atoms are present, but unlike earlier studies in our laboratory, the N and S sites in the base are separated so that they may not readily interact with the same metal atom. The reaction of thiomorpholine with trialkylaluminum derivatives vields four different types of products: the 1:1 adduct, the 2:1 adduct, the 1:1 elimination product and the adduct of the elimination product. Two of the new complexes, Me₁Al · N(H)C₄H₈S, 1a, and [Et₂Al(μ -NC₄H₈S)]₂, 3, have been characterized by single crystal X-ray diffraction studies. The other products have been characterized by NMR spectral studies.

Results and discussion

When thiomorpholine is allowed to react with R_3M , it yields the adducts $R_3M \cdot N(H)C_4H_8S$ (R = Me, 1a; Et, 1b; ⁱBu, 1c; M = Ga, R = Me, 5) or $R_3Al \cdot N(H)C_4H_8S \cdot AlR_3$ (R = Me, 2a; ⁱBu, 2b), or the alkane elimination product $[Et_2Al(\mu-NC_4H_8S)]_2$, 3, or the bridged addition compound $[R_2AINC_4H_8S) \cdot (AIR_3)]_2$ (R = Et, 4a; ⁱBu, 4b). The specific compound(s) formed depends both on the ratio of reactants and the reaction conditions. Small changes in either the reaction conditions or the purity of the reactants affect the product distribution. In a limited study it was also shown that Me_3Ga yielded the addition compound, $Me_3Ga \cdot N(H)C_4H_8S$, 5. To obtain the simple addition compounds, 1, 2 and 5, mild reaction conditions with the appropriate ratio of R_3M to thiomorpholine are required. The formation of the bridge compounds, 3 and 4, is favored by increasing the reaction temperature to promote the alkane elimination process. The reaction conditions and characterization of all of these compounds is given in the experimental section. Scheme 1 shows the reaction and products obtained in hydrocarbon solvent at 25°C.

The molecular structure of the addition compound, 1a, and of the elimination product 3, have been determined by single crystal X-ray diffraction. ORTEP diagrams of 1a and 3 are shown in Figs. 1 and 2, respectively. Selected bond distances and angles are listed in Tables 1 and 2. The structure of 1a consists of a discrete monomeric unit with the aluminum atom in a distorted tetrahedral geometry common for trialkylaluminum addition compounds with the C-Al-C angles all greater than 109° in the R₃Al moiety. The average Al-C and Al-N bond distances (Table 1) are within experimental error of those reported for organoaluminum amine adducts [7]. The thiomorpholine rings are in the chair conformation with

Scheme 1.

Fig. 1. An ORTEP diagram of $Me_3Al \cdot N(H)C_4H_8S$, 1a, showing the atom labeling scheme. Hydrogen atoms are omitted for clarity.

Fig. 2. An ORTEP diagram of $[Et_2Al(\mu-NC_4H_8S)]_2$, 3, showing the atom labeling scheme. Hydrogen atoms are omitted for clarity.

normal distances and angles. There is no apparent interaction between sulfur and aluminum atoms of adjacent molecules.

Compound 3 exists as a nitrogen-bridged dimer with each asymmetric unit containing a complete dimeric molecule. The central ring is not planar with a route-mean-square deviation of 0.1573 Å from the plane described by Al1, N1, Al2 and N2. The two aluminum atoms are below the plane by the same amount the two nitrogen atoms are above the plane. An alternative way to describe this is by measuring the angle between the plane described by N1, Al1 and N2 and the plane described by N2, Al2 and N2 which is $25.5(2)^\circ$. This gives rise to a butterfly-shaped molecule uncommon for nitrogen-bridged aluminum compounds [2-4,8]. This

Bond distances				
Al2-C6	1.979(6)	Al2-C7	1.967(6)	
Al2-C5	1.972(6)	A12-N2	2.032(4)	
Al1-N1	2.030(4)	Al1–C8	1.971(6)	
Al1-C9	1.974(6)	Al1-C10	1.967(6)	
Bond angles				
Al1-N1-C1	112.2(3)	C5-Al2-C6	114.8(3)	
All-N1-C2	112.9(3)	C5-Al2-C7	117.4(3)	
N1-Al1-C8	103.2(2)	C6-Al2-C7	112.4(3)	
N1-Al1-C9	101.4(2)	N2-Al2-C5	104.6(2)	
N1-Al1-C10	104.6(2)	N2-Al2-C6	103.4(2)	
C8-Al1-C9	112.7(3)	N2-Al2-C7	101.9(2)	
C9-Al1-C10	116.9(3)	C8-Al1-C10	115.5(3)	

Selected bond distances (Å) and bond angles (°) for $Me_3Al \cdot N(H)C_4H_8S$, 1a

Table 1

Bond distances		·	
Al1-C11	1.983(6)	Al2-N1	1.956(5)
Al1-C13	1.974(7)	Al2-C21	1.983(6)
Al1-N1	1.993(5)	Al2-C23	1.968(6)
Al1-N2	1.966(5)	Al2-N2	1.989(5)
Al1-Al2	2.777(3)	N1-N2	2.720(7)
Bond angles			
Al1-C11-C12	112.8(4)	Al2-C21-C22	112.8(4)
Al1-C13-C14	113.2(4)	Al2-C23-C24	114.1(4)
Al1-N1-C15	110.5(4)	Al2-N2-C25	113.4(4)
Al1-N1-C17	113.2(4)	Al2-N2-C27	110.1(4)
Al1-N1-Al2	89.4(2)	C21-Al2-C23	113.6(3)
Al1-N2-Al2	89.2(2)	C21-Al2-N2	110.9(2)
Al1-N2-C25	116.3(4)	C23-Al2-N2	111.9(2)
Al1-N2-C27	117.4(4)	N1-Al2-C21	111.9(2)
C11-Al1-C13	112.4(3)	N1-Al2-C23	117.8(2)
C11-Al1-N1	111.0(2)	N1-Al2-N2	88.0(2)
C11-Al1-N2	111.7(2)	C13-Al1-N1	113.5(2)
C13-Al1-N2	118.2(2)	N1-Al1-N2	87.6(2)

Table 2 Selected bond distances (Å) and angles (°) for $[Et_2Al(\mu-NC_4H_8S)]_2$, 3

deviation from planarity may result from weak interactions of the thiomorpholine rings with the other ligands, but no detailed analysis of this has been attempted. The remainder of the features of the dimer are normal for organoaluminum compounds. The plane containing the aluminum atoms and the carbons bound to them forms an angle of $89.2(4)^{\circ}$ with the plane defined by the central ring atoms. The thiomorpholine rings are in the chair conformation, and there appears to be no interaction between sulfur and aluminum atoms. All of the bond distances and angles of the central ring and the metal-carbon parameters (see Table 2) can be compared with those of analogous compounds [2–6,8].

The NMR spectra of these derivatives provide interesting insight into the stability and structure of the molecules in solution. Thiomorpholine gives a complex ¹H NMR spectrum with the NH proton at 1.11 ppm, the SCH₂ protons at 2.28 and those associated with the NCH₂ unit at 2.74 ppm. Under normal conditions no coupling is observed between the NH proton and either the axial or equatorial protons on the thiomorpholine ring because of rapid conformational changes. On complex formation all of these signals are shifted slightly, and the second order splittings are also modified as the chemical shifts and coupling between the NH proton and the ring protons that ranges from 8 to 12 Hz. Furthermore in 2a and 2b two distinct sets of resonances for the R₃Al groups are observed, one corresponding to the N-bound and one to the S-bound moieties. This latter feature establishes that no exchange between these sites occurs on the NMR time scale and provides a crude measure of the stability of the adducts.

In order to better understand the coupling interaction between the NH proton and the ring, a series of selective decoupling experiments was carried out and is shown in Fig. 3. Decoupling the signals centered at 2.1 ppm shows that the NH proton is coupled primarily to these protons which are also coupled to the geminal

Fig. 3. ¹H NMR spectrum of $Me_3Al \cdot N(H)C_4H_8S \cdot AlMe_3$, 2a; full spectrum (bottom); with selective decoupling \downarrow centered on the multiplets with chemical shifts equal to 2.46, 2.14, 1.43 and 0.82 ppm (above).

protons (see Fig. 3). Neither set of protons on this carbon is strongly coupled to those on the carbon α to the S atom.

Examination of the structure of the molecule provides additional insight into this system. In **1a** the dihedral angles H–N–C–H for the axial and equatorial protons on the α -carbon atom to nitrogen are around 170° and 70°, respectively. Similar angles are to be expected in the bis addition compounds, **2a** and **2b**. Application of the Karplus equation, which relates the dihedral angle to the magnitude of the vicinal coupling constant, predicts a large coupling to the axial protons on the order of 10–12 Hz and near zero for coupling to the equatorial protons [9]. Thus, the resonance centered at 2.1 ppm can be assigned to the axial protons and the other resonances can then be assigned relative to this set of protons. The ¹³C NMR spectrum shows only single environments for the CH₂ carbon atoms and is consistent with this interpretation.

The conclusions which may be drawn from these observations are that the thiomorpholine ring is locked into the chair conformation on complex formation which permits coupling to occur between the NH proton and the axial protons on the carbon α to the nitrogen atom. Furthermore the stability of the bis complexes is sufficient to prevent rapid exchange of the R₃Al moieties between the nitrogen and sulfur sites on the thiomorpholine ring.

Experimental

General experimental conditions

All solvents were purified and dried by standard techniques [10]. Argon gas was purified by passing through a series of columns containing Deox catalyst, calcium sulfate and phosphorus pentoxide. Trimethylaluminum (Aldrich, 2.0 M solution in toluene), triethylaluminum (Aldrich, 1.9 M solution in toluene), triisobutylaluminum (1.0 M solution in toluene) and thiomorpholine (Aldrich) were used as received. All glassware used in the synthetic work was oven-dried, and standard Schlenk line techniques were employed since the starting materials and new derivatives are both air- and moisture-sensitive, decomposing over a period of minutes in the solid state or in solution on exposure to air. The new species are moderately to very soluble in hydrocarbons such as pentane, benzene and toluene and in the donor solvents such as diethyl ether and tetrahydrofuran. ¹H and ¹³C NMR spectra were recorded on a General Electric QE-300 spectrometer at 25°C. The chemical shifts were referenced to the residual protic benzene- d_6 peak ($\delta = 7.15$ ppm) for ¹H spectra and to the center of the benzene triplet ($\delta = 128.0$ ppm) for ¹³C spectra. Elemental analyses on selected compounds were performed by Galbraith Laboratories, Knoxville, TN.

Preparation of $Me_3Al \cdot N(H)C_4H_8S$, 1a

To 0.5 g (0.49 mL, 4.85 mmol) of thiomorpholine in 20 mL of pentane, Me₃Al (2.4 mL, 4.8 mmol) was added dropwise with stirring. Upon addition of Me₃Al, an exothermic reaction was observed. The resulting solution was then stirred for 2 h. Removal of volatiles *in vacuo* resulted in a white powder in quantitative yield. m.p. 107–108°C. Anal. Found: C 45.98; H 9.9; N 7.69. C₇H₁₈NSAl calc.: C 47.97; H 10.35; N 7.99%. ¹H NMR: -0.55 (s, 9H); 0.92 (NH, broad, 1H); 1.63 (m, splitting = 4.8 Hz, 4H); 2.47 (m, splitting = 3.3 Hz, 4H). 13C{1H}: -9.6 (Al–C); 26.3 (C–S); 45.8 (C–N).

Preparation of $Et_3Al \cdot N(H)C_4H_8S$, 1b, and $[Et_2Al(\mu-NC_4H_8S)]_2$, 3

In an analogous fashion to 1a, 1b and 3 were prepared by the addition of Et₃Al (2.5 mL, 4.8 mmol) to 0.5 g (4.85 mmol) of thiomorpholine. NMR of the crude product showed two products in an 85:15 ratio by integration. The compounds were identified as the amine-adduct (1b, 85%) and the alkane-elimination product (3, 15%). Compound 3 was selectively recrystallized from a pentane/toluene solution (70:30) to give suitable, X-ray diffraction quality, single crystals. ¹H NMR (1b): -0.02 (q, ${}^{3}J = 8.2$ Hz, 6H); 1.16 (NH, t, ${}^{3}J \cong 8.0$ Hz, 1H); 1.28 (t, ${}^{3}J = 8.2$ Hz, 9H); 1.81 (broad, 4H); 2.59 (broad, 4H). ${}^{13}C{}^{1}H{}$: -1.0 (Al-C-C); 10.5 (Al-C-C); 26.7 (Al-C-C); 46.5 (C-N). ¹H NMR (3): -0.03 (q, ${}^{3}J = 8.2$ Hz, 4H); 1.27 (t, ${}^{3}J = 8.2$ Hz, 6H); 2.20 (broadened m, 4H); 2.82 (broadened m, 4H). ${}^{13}C{}^{1}H{}$: -0.5 (Al-C-C); 9.4 (Al-C-C); 28.0 (Al-C-S); 49.1 (C-N).

Preparation of $({}^{l}Bu)_{3}Al \cdot N(H)C_{4}H_{8}S$, 1c

The same procedure was used to prepare 1c by the addition of $({}^{1}Bu)_{3}A1$ (4.8 mL, 4.8 mmol) to 0.5 g (4.85 mmol) of thiomorpholine. ${}^{1}H$ NMR: -0.02 (d, ${}^{3}J = 6.9$ Hz, 6H); 0.96 (NH, t, ${}^{3}J \approx 8.0$ Hz, 1H); 1.14 (d, ${}^{3}J = 6.6$ Hz, 18H); 1.76 (broad, 4H); 1.97 (m, splitting = 6.6 Hz, 2H); 2.60 (broad, 4H). ${}^{13}C{}^{1}H$: 22.5 (Al-C-C-C); 26.9 (Al-C-C-C); 27.2 (C-S); 29.1 (Al-C-C-C); 46.6 (C-N).

Preparation of $Me_3Al \cdot N(H)C_4H_8S \cdot AlMe_3$, 2a

In an analogous fashion to 1a, compound 2a was prepared by the addition of Me_3Al (5.0 mL, 10.0 mmol) to 0.5 g (4.85 mmol) of thiomorpholine. m.p. 134–135°C. Anal. Found: C 47.80; H 10.30; N 5.85. $C_{10}H_{27}NSAl_2$ calc.: C 48.56; H 11.00; N 5.66%. ¹H NMR: -0.61 (s, 9H); -0.46 (s, 9H); 0.82 (t, ³J = 12 Hz, 1H); 1.50 (m, splitting = 14.4 Hz, 3.0 Hz, 4H); 2.13 (m, splitting = 11.4 Hz, 3.3 Hz, 2H); 2.45 (m splitting = 14.7 Hz, 2.6 Hz, 2H). ¹³C{¹H}: -9.6 (N-Al-C), -8.7 (S-Al-C), 26.6 (C-S), 44.0 (C-N).

Preparation of $({}^{i}Bu)_{3}Al \cdot N(H)C_{4}H_{8}S \cdot Al({}^{i}Bu)_{3}$, 2b, and $[({}^{i}Bu)_{2}Al(\mu - NC_{4}H_{8}S \cdot Al({}^{i}Bu)_{3})]_{2}$, 4b

The reaction of $({}^{i}Bu)_{3}Al$ with thiomorpholine was carried out in the same manner as for 2a with a 2:1 ratio of $({}^{i}Bu)_{3}Al$ to thiomorpholine. This reaction

gave a mixture of products corresponding to the addition compound **2b** and the elimination product **4b**. These were identified by their characteristic NMR spectra but were not isolated. ¹H NMR: d, -0.09; d, 0.03; d, 0.121; d, 0.76 (all are CH₂ α to Al in the ¹Bu group) 1.09 overlapping multiplets; 1.7 NH with axial coupling \cong 12 Hz; 1.9 overlapping multiplets, 2.47 overlapping multiplets; 2.7 overlapping multiplets. ¹³C{¹H}: 19.4, 22.1, 22.5, 23.0, 26.0, 26.4, 27.1, 28.0, 28.1, 28.5, 28.7, 28.8, 29.1, 45.7, 49.4.

Preparation of $[Et_2Al(\mu-NC_4H_8S \cdot AlEt_3)]_2$, 4a

Similarly, **4a** was prepared by the addition of Et₃Al (5.1 mL, 9.70 mmol) to 0.5 g (4.85 mmol) of thiomorpholine. This reaction results primarily in the alkaneelimination, sulfur addition product. ¹H NMR: -0.08 (t, ³J = 8 Hz, 6H); 0.15 (q, ³J = 8 Hz, 4H); 1.14 (t, ³J = 8 Hz, 9H); 1.28 (t, ³J = 8 Hz, 6H); 2.18 (broad, 4H); 2.68 (broad, 4H). ¹³C{¹H}: -0.8 (N-Al-C-C); -0.3 (S-Al-C-C); 9.4 (S-Al-C-C), 10.2 (N-Al-C-C), 27.2 (C-S), 49.2 (C-N).

Preparation of $Me_3Ga \cdot N(H)C_4H_8S$, 5

 $Me_3Ga \cdot N(H)C_4H_8S$, 5 was prepared by the addition of Me_3Ga (0.56 g, 0.48 mL, 4.86 mmol) to 0.25 g (2.43 mmol) of thiomorpholine. ¹H NMR: -0.25 (s, 9H); 0.77 (t, broad, 1H); 1.69 (m, splitting = 4.8 Hz, 4H); 2.43 (broad, 4H). ¹³C{¹H}: -6.7 (N-Ga-CH_3), 26.7 (C-S), 46.2 (C-N). Treatment with a 2:1 excess of Me_3Ga did not lead to a stable Ga-S bonded addition compound and under the reaction conditions did not yield an elimination product.

X-Ray structure determination of $Me_3Al \cdot N(H)C_4H_8S$, 1a, and $[Et_2Al(\mu - NC_4H_8S)]_2$, 3

Crystals of $Me_3Al \cdot N(H)C_4H_8S$, **1a**, were grown from a pentane solution at $-20^{\circ}C$. Crystals of $[Et_2Al(\mu-NC_4H_8S)]_2$, **3**, were obtained from pentane/toluene solution (70:30) at $-20^{\circ}C$. In each case a crystal suitable for X-ray diffraction studies was mounted in a thin-walled capillary tube in a dry box, plugged with grease, removed from the dry box, flame sealed, mounted on a goniometer head and placed on a diffractometer for data collection. Parameters from the crystal structure determination are presented in Table 3.

Lattice constants were verified by axial photographs. Compound 1a was assigned to the space group $P2_1/c$ (No. 14); and the crystal of 3a was assigned to the space group $P2_1/c$ (No. 14) on the basis of the systematic absences. Data reduction was carried out using the SHELXTL program [11]. The direct method produced acceptable solutions for the structures in all cases placing all of the non-hydrogen atoms. Full-matrix least-squares refinement was carried out using SHELX-76 [12]. The data were corrected for Lorentz and polarization effects and scattering factors for neutral carbon, nitrogen and aluminum atoms were used [13]. Each hydrogen atom was placed with a C-H bond distance of 0.96 Å, and the C-H vector held constant in magnitude and direction, but not position, during subsequent refinement. A few additional cycles of refinement of the data led to a convergence with R = 6.30% ($R_w = 5.99\%$) for 1a and R = 5.93% ($R_w = 4.62\%$) for 3a. Atomic coordinates and isotropic thermal parameters for the non-hydrogen atoms in 1a and 3a are presented in Tables 4 and 5.

Table 3

Compound	$Me_{3}Al \cdot N(H)C_{4}H_{8}S$, 1a	$[Et_2Al(\mu - NC_4H_8S)]_2, 3$
Formula	C ₇ H ₁₈ NSAl	C ₁₆ H ₃₆ Al ₂ N ₂ S ₂
Mol. weight	175.27	374.57 amu
Crystal habit	Cubic	Rectangular needles
Crystal color	Colorless	Golden
Dimensions (mm)	$0.45 \times 0.38 \times 0.38$	0.20×0.25×0.35
Crystal system	Monoclinic	Monoclinic
Space group	P2, /c (No. 14)	$P2_{1}/n$ (No. 14)
Cell constants	17	17
a	8.452(4) Å	7.167(1) Å
Ь	21.075(4) Å	13.547(2) Å
с	12.267(2) Å	16.227(2) Å
ß	90.37(2)°	96.74(1)°
7.	8 (monomers)	4 (dimers)
- Volume	2184 80(2 12) Å ³	$2124 3(4) Å^{3}$
Volume Density (colo.)	1.065 a cm^{-3}	$1 14 \text{ g cm}^{-3}$
Density (calc.)		
Radiation type	Mo- K_{α} $\lambda = 0.71073$ A,	$Cu-K_{\alpha} \lambda = 1.54178 A$
_	Graphite monochromator	Ni filtered
Temperature	Ambient	Ambient
Type of data collection	$\theta/2\theta$ scan	$\theta/2\theta$ scan, intensities by counter
2θ scan range	6–52°	8–110°
Octants used	$h, k, \pm l$	$+h, +k, \pm l$
Scan rate	4–10°/min	Variable, 2.0–5.0°/min
Scan width	1.0° below $K_{\alpha 1}$	1.0° below $K_{\alpha 1}$ to
	to 1.0° above $K_{\alpha 2}$	1.0° above $K_{\alpha 2}$
Background/scan ratio	0.5	1.0
Standard reflections	3 measured per every	3 measured per every
	100 reflections,	100 reflections,
	linear decay $\sim 1\%$	linear decay ~ 5%
Number of data collected	4727	2981
Number of unique reflections	4307	2402, $R_{\rm int} = 0.0$
Observed reflections	$2029 [F_0 \ge 3.00(F)]$	$1722 [F_0 \ge 3.00(F)]$
Linear absorption coefficient (μ)	2.87 cm^{-1}	22.26 cm^{-1}
F(000)	736 electrons	816 electrons
Absorption correction	Empirical, psi scans	None applied
Number of parameters refined	183	202
Observed/parameter ratio	11:1	8.52:1
$R = \sum (F_{o} - F_{c}) / \sum F_{o} $ $R_{w} = [\sum (F_{o} - F_{c})^{2}$	6.30%	5.9%
$\frac{1}{\sum w F_0 ^2} \frac{1}{2} \frac{F_0}{F_0} + \frac{1}{2} \frac{F_0}{F_0} + \frac{1}{2} \frac{F_0}{F_0} \frac{F_0}{F_0} + \frac{1}{2} \frac{F_0}{F_0} \frac{F_0}{F$	5.99%	4.62%
Overall shift/e.s.d.	< 0.000	< 0.000
Maximum shift/e.s.d.	0.013	0.001
Secondary extinction	_	Three reflections omitted
Residual electron density	0.34 e∕Å ³ 1.09 Å from C2	0.35 e ⁻ /Å ³ , 1.3 Å away from S1

Experimental parameters for the X-ray diffraction study of $Me_3Al \cdot N(H)C_4H_8S$, 1a, and $[Et_2Al(\mu - NC_4H_8S)]_2$, 3

Table 4

Atomic coordinates and isotropic thermal parameters for the non-hydrogen atoms in $Me_3Al \cdot N(H)C_4H_8S$, 1a

Atom	x	у	z	U_{eq}^{a}
S 1	0.7594(2)	0.07174(9)	0.2501(2)	0.0784(8)
S2	1.2689(2)	0.0604(1)	-0.0011(2)	0.0867(8)
Al1	0.2900(2)	0.15555(8)	0.4747(1)	0.0463(6)
Al2	0.7940(2)	0.14860(9)	0.7825(1)	0.0480(6)
N1	0.4889(4)	0.1439(2)	0.3851(3)	0.040(2)
N2	0.9959(5)	0.1362(2)	0.8708(3)	0.043(2)
C1	0.6077(7)	0.1029(3)	0.4411(4)	0.059(2)
C2	0.4556(6)	0.1222(3)	0.2724(4)	0.061(2)
C3	0.7667(7)	0.1022(3)	0.3866(5)	0.070(3)
C4	0.6118(8)	0.1259(3)	1.1937(5)	0.083(3)
C5	0.7179(7)	0.0619(3)	0.7525(5)	0.074(3)
C6	0.6581(7)	0.1988(3)	0.8810(4)	0.064(2)
C7	0.8698(7)	0.1986(3)	0.6579(4)	0.072(3)
C8	0.1525(7)	0.2065(3)	0.3783(5)	0.074(3)
C9	0.3720(8)	0.2044(3)	0.6001(5)	0.078(3)
C10	0.2160(8)	0.0688(3)	0.5040(5)	0.072(3)
C11	0.9700(7)	0.1120(3)	-0.0158(5)	0.066(3)
C12	1.1138(7)	0.0961(3)	- 0.1875(5)	0.064(2)
C13	1.2739(7)	0.0947(3)	-0.1340(5)	0.075(3)
C14	1.1175(9)	0.1114(4)	0.0526(5)	0.086(3)

Table 5

Atomic coordinates and isotropic thermal parameters for the non-hydrogen atoms in Et_2Al(μ -NC₄H₈S)]₂, 3

Atom	x	у	z	U _{eq} ^a
Al1	0.8958(3)	0.7371(1)	0.7746(1)	0.0418(8)
C11	0.6389(8)	0.7107(4)	0.7980(4)	0.055(3)
C12	0.6230(9)	0.7042(4)	0.8903(4)	0.072(3)
C13	1.0901(9)	0.6735(4)	0.8329(4)	0.062(3)
C14	1.038(1)	0.5931(4)	0.8280(5)	0.085(4)
N1	0.9449(7)	0.8427(3)	0.7942(3)	0.041(2)
C15	1.1488(9)	0.8553(4)	0.8253(4)	0.056(3)
C16	1.2071(9)	0.9349(3)	0.8325(4)	0.059(3)
C17	0.8293(9)	0.8751(3)	0.8555(4)	0.051(3)
C18	0.8491(9)	0.9561(3)	0.8628(4)	0.064(3)
S1	1.0840(3)	0.9840(1)	0.9044(1)	0.0651(8)
Al2	0.8665(3)	0.8613(1)	0.6766(1)	0.0423(8)
C21	0.5967(8)	0.8874(4)	0.6555(4)	0.053(3)
C22	0.5297(9)	0.8977(4)	0.5638(4)	0.076(4)
C23	1.0298(9)	0.9227(3)	0.6162(4)	0.058(3)
C24	0.982(1)	1.0039(4)	0.6169(5)	0.084(4)
N2	0.9049(7)	0.7561(3)	0.6559(3)	0.042(2)
C25	0.7533(9)	0.7234(3)	0.5981(4)	0.054(3)
C26	0.7723(9)	0.6414(4)	0.5922(4)	0.066(3)
C27	1.0888(9)	0.7446(4)	0.6226(4)	0.056(3)
C28	1.1457(9)	0.6654(4)	0.6161(5)	0.070(3)
S2	0.9793(3)	0.6137(1)	0.5466(1)	0.0771(9)

 $\overline{U_{eq} = 1/3 \sum_i \sum_j U_{ij} a_i^* a_j^* a_i \cdot a_j}.$

Acknowledgments

Acknowledgement is made to the donors of the Petroleum Research Fund administered by the American Chemical Society for the support of this research. We thank Dr. Brian Edwards of the Biochemistry Department, School of Medicine, Wayne State University, for the use of the X-ray diffractometer.

Supplementary material available. A listing of the anisotropic thermal parameters, atomic coordinates for the hydrogen atoms and their isotropic thermal parameters, complete listings of bond distances and angles and listings of the observed and calculated structure factors are available for **1a** and **3**.

References

- 1 T. Mole and E.A. Jeffery, Organoaluminum Compounds, Elsevier, Amsterdam, 1972; J.J. Eisch, Aluminum, in G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 1, Chap. 6, Pergamon, Oxford, 1982, pp. 555-683.
- 2 Extensive review of the literature is presented by M. Cesari and S. Cicinella, Aluminum-Nitrogen Rings and Cages, in I. Haiduc and D.B. Sowerby (Eds.), The Chemistry of Inorganic Homo- and Heterocycles, Vol. I, Academic Press, London, 1987, p. 167. Also see: (a) G.M. McLaughlin, G.A. Sim and J.D. Smith, J. Chem. Soc., Dalton Trans. (1972) 2197; (b) P.B. Hitchcock, J.D. Smith and K.M. Thomas, *ibid.*, (1976) 1433; (c) S. Amirkhalili, P.B. Hitchcock and J.D. Smith, *ibid.*, (1979) 1206; (d) S. Amirkhalili, P.B. Hitchcock, A.D. Jenkins, J.Z. Nyathi and J.D. Smith, *ibid.*, (1981) 377; (e) A.-A.I. Al-Wassil, P.B. Hitchcock and J.D. Smith, *ibid.*, (1981) 377; (e) A.-A.I. Al-Wassil, P.B. Hitchcock and J.D. Smith, *ibid.*, (1985) 1929; (f) K.M. Waggoner, H. Hope and P.P. Power, Angew. Chem. Int. Ed. Engl., 27 (1988) 1699; (g) K.M. Waggoner and P.P. Power, J. Am. Chem. Soc., 113 (1991) 3385.
- 3 (a) L.V. Interrante, G.A. Sigel, M. Garbauskas, C. Hejna and G.A. Slack, Inorg. Chem., 28 (1989) 252; (b) F.C. Sauls, L.V. Interrante and Z. Jiang, *ibid.*, 29 (1990) 2989; (c) Z. Jiang, L.V. Interrante, D. Kwon, F.T. Tham and R. Kullnig, *ibid.*, 30 (1991) 995; (d) M.M. Lynam, L.V. Interrante, C.H. Patterson and R.P. Messmer, *ibid.*, 30 (1991) 1918.
- 4 (a) F. Moise, W.T. Pennington, G.H. Robinson and S.A. Sangokoya, Acta. Crystallogr., C46 (1990) 1110; (b) G.H. Robinson, W.T. Pennington, B. Lee, M. Self and D.C. Hrncir, Inorg. Chem., 30 (1991) 809; (c) G.H. Robinson, A.D. Rae, C.F. Campana and S.K. Bryam, Organometallics, 6 (1987) 1227; (d) G.H. Robinson, S.A. Sangokoya, F. Moise and W.T. Pennington, ibid., 7 (1988) 1887; (e) G.H. Robinson and S.A. Sangokoya, J. Am. Chem. Soc., 109 (1987) 6852; (f) G.H. Robinson and S.A. Sangokoya, Organometallics, 7 (1988) 1453; (g) M. Veith, H. Lange, O. Recktenwald and W. Frank, J. Organomet. Chem., 294 (1985) 273; (h) V.L. Goedken, H. Ito and T. Ito, J. Chem. Soc., Chem. Commun. (1984) 1453; (i) J.T. Leman and A.R. Barron, Organometallics, 8 (1989) 1828; M.J. Zaworotko and J.L. Atwood, Inorg. Chem., 19 (1980) 268.
- 5 (a) M.R.P. van Vliet, G. van Koten, M.S. de Keijser and K. Vrieze, Organometallics, 6 (1987) 1652;
 (b) Y. Kai, N. Yasuoka, N. Kasai and M. Kakudo, Bull. Chem. Soc., Jpn., 45 (1972) 3397; (c) M.L. Sierra, V.S.J. de Mel and J.P. Oliver, Organometallics, 8 (1989) 2486; (d) D.G. Hendershot, M. Barber, R. Kumar and J.P. Oliver, ibid., 10 (1991) 3302; M.D. Healy and A.R. Barron, J. Am. Chem. Soc., 111 (1989) 398; S.T. Dzugan and V.L. Goedken, Inorg. Chem., 25 (1986) 2858; M.R.P. van Vliet, G. van Koten, M.A. Rotteveel, M. Schrap, K. Vrieze, B. Kojić-Prodić, A.L. Spek and A.J.M. Duisenberg, Organometallics, 5 (1986) 1389.
- 6 R. Kumar, J.V.S. de Mel and J.P. Oliver, Organometallics, 8 (1989) 2488.
- 7 See for example: (a) J.L. Atwood and P.A. Milton, J. Organomet. Chem., 52 (1973) 275; (b) O. Gropen and A. Haaland, Acta Chim. Scand., 27 (1973) 521; (c) C.D. Whitt and J.L. Atwood, J. Organomet. Chem. 32 (1971) 291 and refs. therein.
- 8 G.H. Robinson, S.A. Sangokoya and R.D. Rogers, Polyhedron, 7 (1988) 2727 and refs. therein.
- 9 R.K. Harris, Nuclear Magnetic Resonance Spectroscopy, Pitman, London, 1983, pp. 220-221.
- 10 D.F. Shriver, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
- 11 G.M. Sheldrick, shelxtl, University of Gottingen, Germany, 1978.
- 12 G.M. Sheldrick, SHELX-76, University Chemical Laboratory, Cambridge, UK, 1976.
- 13 International Tables for X-Ray Crystallography, Vol. IV, Kynoch, Birmingham, UK, 1974 (present distributor D. Reidel, Dordrecht).